INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 26: 977-986 (1998)

A CONTROL VOLUME-BASED DISCRETIZATION OF THE
REYNOLDS EQUATION FOR THE NUMERICAL
SOLUTION OF ELASTOHYDRODYNAMIC LUBRICATION
PROBLEMS

JAN CERMAK!*

Department of Thermomechanics, Faculty of Mechanical Engineering, Technical University of Brno, Technicka No. 2,
Brno 616 69, Czech Republic

SUMMARY

This paper deals with the discretization of the one-dimensional Reynolds equation coupled with the film
shape equation, that is used for the numerical solution of elastohydrodynamically lubricated contacts.
The derivation of the developed discretization formula is based on the control volume approach. To
reduce the discretization error caused by the upwind expression of the Couette (velocity) term,
non-symmetric control volumes are used for discretization of the Reynolds equation, while for the
elasticity equation the standard approach is used. A numerical method for the solution of the pressure
and the film thickness profiles of elastohydrodynamically lubricated isothermal line contacts is presented.
Results are presented for chosen typical parameters of a highly loaded contact. To show the formula
efficiency, the convergence speed of both the presented discretization formula and a chosen comparative
discretization formula (A.A. Lubrecht, Ph.D. Thesis, University of Twente, The Netherlands, 1987 and
C.H. Venner, Ph.D. Thesis, University of Twente, The Netherlands, 1991) are checked. The results show
that the presented formula gives better approximations of film thickness values for a given number of
equidistant grid nodes. Moreover, the presented approach is probably suitable for more sophisticated
cases, such as transient situations and elliptical contacts. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Elastohydrodynamic lubrication (EHL or EHD lubrication) is the dominant regime of
lubrication of highly loaded non-conform contacts [1]. Such contacts are used in a wide range
of critical machine parts, e.g. roller bearings and gears. Reynolds distinguished that the flow
of lubricant in a narrow gap between contact surfaces is of a creeping-flow nature [2] and
derived the Reynolds differential equation in 1886. Only the Reynolds equation governs
processes of a hydrodynamic lubrication nature and it is assumed that deformations of contact
surfaces are negligible. In the case of EHL, the clastic deformations of surfaces have to be
considered as they are non-negligible in comparison with the fluid film thickness. Therefore, it
is necessary to solve the Reynolds equation coupled with the elasticity equation when dealing
with EHL. Dowson and Higginson [3] were among the first who successfully solved this
problem via a numerical simulation.
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Many papers have been published on the numerical solution of EHL phenomena, i.e. on the
determination of pressure, film thickness, temperature, etc. The problem is still unresolved and
various authors prefer different types of procedures [1]. The numerical research has been
concentrated on the line and point contact problems with different assumptions. However, the
computations are very time consuming, in spite of the increasing computer power.

Whenever a digital computer is used to solve a differential equation, two problems arise.
First there is the issue of discretization; this reduces the differential equation to a non-linear
system of algebraic equations. The solution of the algebraic system is another matter. To
reduce the computation time for large grids numerous research works have been performed
and sophisticated numerical methods employed to solve the algebraic equations, e.g. the
multilevel multigrid method [4,5].

An alternative way to obtain more accurate results and to reduce computation times, is to
improve the discretization formula. It would be desirable to have a discretization formula so
that coarser grids could be used to obtain a solution with the same discretization error, as for
a standard discretization formula on a finer grid. The control volume method introduced by
Patankar [6] is a modern method for discretization of differential equations, representing the
laws of conservation exemplified by the Reynolds equation.

The scope of this paper is to use the control volume approach to obtain an efficient
discretization formula for the EHL problem solution.

The aims of the paper are: (i) To introduce an improved discretization formula for the
solution of the EHL line contact problem with the discretization based on the control volume
philosophy. The formula attempts to reduce the error caused by the upwind discretization of
the last term (Couette or velocity) of the Reynolds equation, while saving the numerical
properties (smoothness of solutions, physically realistic solutions). (ii) To present the developed
numerical method for the solution of discretization equations. (iii) To present results and
perform comparisons of convergence speed for both a standard and the introduced discretiza-
tion formulae.

The relatively simple case of the EHL line contact has been chosen as a benchmark,
although all questions on the topic are not answered satisfactorily yet. However, the results
clearly show the developed discretization formula’s efficiency.

2. EQUATIONS

Equations used to solve the EHL line contact problem will be briefly introduced, as well as the
constrains of the solution sought. (For further information see [7]). The one-dimensional
Reynolds Equation (1) and fluid property Equations (3) and (4) describe the Newtonian fluid
behavior. Note that Equation (3) is the so-called Roelands viscosity—pressure relationship and
Equation (4) is the so-called Dowson and Higginson’s density—pressure dependence.

The film shape (lubricant film thickness) at location x is described by Equation (2a,b).
Considering the right-hand-side of Equation (2a), the first term represents the position of the
first non-deformed contact surface relative to the second, the second term a separation due to
geometry, and the third term an elastic deformation of both elastic surfaces. For the expression
of the geometric separation of contact surfaces, a parabolic approximation of a circle is used.
Materials of both contact solids have the same reduced modulus of elasticity £’. One of the
solids is a plane and the other is of reduced radius R.

Steady state and smooth surfaces are assumed. Solids in the rolling contact are assumed to
be infinitely long, thus no side leakage of the lubricant is expected. No thermal effects are
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assumed, which is only approximately true for pure rolling situations (adiabatic compression
is neglected).

The pressure profile is constrained by the following conditions: (i) the pressure is equal to
zero at the beginning of the contact region and (ii) the pressure is greater than or equal to zero
in the whole contact region. A ventilation boundary condition determines the outlet point (the
point at which the fluid film divides resulting in ventilation) [2], the Reynolds equation being
no longer valid. Before this point is reached, the pressure profile reduces, becoming zero at this
point. The constrain is realized by the computation algorithm by simply replacing a negative
pressure value with zero.
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3. DISCRETIZATION

Discretization is a process of replacing a differential equation (the solution of which is
unknown) by a system of algebraic equations, the solution of which gives an approximation of
the differential equation’s solution over some discrete points (grid nodes). Some of the
‘reasonable’ requirements that a ‘reasonable’ discretization formula should satisfy have been
formulated, e.g. see Reference [6]. However, only some of them are useful due to the
integro-differential nature of the Reynolds equation coupled with the film shape equation.

For the development of the discretization formula, the control volume approach was chosen
because of its simplicity and straightforwardness. The method is described by Patankar [6] with
respect to applications in heat transfer and fluid flow. The fundamental idea is that the
continuum is divided into control volumes and the laws of conservation are applicable to each.
In such equations, the mass flow terms only appear at the control volume faces, and they need
to be determined as accurately as possible. Consequently, it is necessary to express the mass
flows via values of independent variables at the grid points. This results in an algebraic system.
It can only be solved when the number of equations is equal to the number of unknowns, i.e.
the control volume has to contain just one grid point.

In the present case, the Reynolds equation describes a mass flow conservation. For a control
volume it is expressed by Equation (5), which can be obtained by the integration of the
Reynolds equation over the control volume. The alternative way is to derive the mass
conservation equation for the finite volumes directly, skipping the derivation of the differential
equation. The control volume walls have been denoted as ‘western’ and ‘eastern’ by appropri-
ate small letter subscripts in accordance with Patankar.
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The problem now is to express the mass flow via a combination of grid point values of:
pressure, film thickness, viscosity and density. The discretization formula (6a—g) has been
developed for this purpose. The notation is explained in Figure 1. The terms of the mass
conservation Equation (5) are described for the eastern wall only. The western wall terms are
analogous. Note that the grid node is not placed in the middle of the control volume, but in
the last three quarters. The design of such an unusual configuration was developed considering
the fact that in the contact region, the Couette term of the Reynolds equation is several orders
of magnitude higher than the Poiseuille one, due to the high viscosity values. The introduced
non-symmetric first-order upwind discretization of the Couette (velocity) term (6a) expresses
the term on the control volume wall more accurately, and causes a smaller error than a
symmetric first-order upwind discretization. The Poiseuille term is expressed by the non-sym-
metric second-order discretization (6b,c). Unfortunately, the second-order symmetric dis-
cretization is more suitable than the non-symmetric discretization. However, it causes only a
small error due to the small value of the term in comparison with the Couette one.

Altogether, the presented discretization formula, due to the dominance of the Couette term
(being first-order), expresses the mass flow through the control volume wall better. A similar
formula could be derived for the second-order one [8]; however, it is not guaranteed that
convergence could be reached using the same numerical method and relaxation factors.

In the inlet region, the viscosity value is small and the above mentioned assumptions are do
not hold. Thus, as a second step for future work, we recommend trying a discretization that
depends on a ratio of the two terms.

When the deformation is evaluated (6e), it is supposed that the pressure is constant, not over
the control volume, but over a symmetric domain (see Figure 2). The pressure value over the
symmetric domain is equal to the grid node pressure. It can be said that ‘the control volume
for the Reynolds equation’ and ‘the control volume for the film shape equation’ are ‘shifted’,
the first one relative to the second one, while the grid node is the same for both control
volumes.
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Figure 1. The control volume for discretization of the Reynolds equation. Walls are dashed and denoted by e (eastern)
and w (western). Grid nodes are denoted by W, E and P.
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Figure 2. The symmetric domain for numerical computation of elastic deformations (boundaries are dashed). The

pressure is assumed to be constant over the domains, and values are denoted p,_,, p,, and p;, | in accordance with

Equation (6e). Grid nodes are denoted i — 1 (corresponding to W in Figure 1), i (corresponding to P), and i+ 1
(corresponding to E).
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4. NUMERICAL METHOD

A
X — x|+ 2>:| (6g)

To obtain an approximate solution of our integro-differential Equation (1), we have to solve
the non-linear discretization Equations (5) and (6a-g) for each grid point. An iterative
numerical scheme is commonly used for this purpose. The Gauss Seidel’s underrelaxation
iterative method was chosen. To obtain a new approximation, the one-dimensional method of
cuttings has been employed. The method of cuttings is suitable for testing discretization
formulae because derivatives are computed numerically. However, more computation is
required.

Note that Lubrecht [9] and Venner [10] used a similar numerical method for their multigrid
solver, but they employed the one-dimensional Newton method instead of the method of
cuttings. However, they did not express all derivatives, but only a part of the more important
ones, while the rest were neglected.

It would not be appropriate to explain all the algorithm details here. The program source
text (including comments) in language C is available from the author.
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5. RESULTS AND COMPARISON

For the presentation of results and for comparisons of the introduced discretization formula
with previously used ones, a set of typical parameters for a highly loaded steel-to-steel line
contact, flooded with a mineral oil, is chosen and introduced in Table I. There have been many
series of dimensionless parameters introduced by a number of authors. In Table I, the Dowson
and Higginson’s dimensionless parameters are used. An equidistant grid is used for all
computations. The pressure profile and film thickness for the number of nodes, n = 1000, are
depicted in Figures 3 and 4.

The second (and main) task of this contribution is to compare the presented discretization
formula with another widely used one, from the convergence speed point of view. The formula
that was successfully used by Lubrecht [9] and Venner [10], has been chosen as the comparative
one. It is introduced by Equation (7a—c). The notation is the same as the previously used one.
Elastic deformations are computed the same way. Note that this comparative formula differs
from the presented one in the grid node placement only. The Poiseuille (pressure) term (7b,c)
is discretized via the second-order central discretization and the Couette (velocity) term (7a) via
the first-order upwind discretization. The grid node is in the middle of the control volume if
we investigate the comparative formula from the control volume approach point of view. No
‘shifted control volumes’ are used. The formula is also first-order with regard to the Couette
term dominance.

The comparison has been performed by investigating the results for both discretization
formulae and different number of nodes: n = 100, 200, 300, 400, 600, 700, 800, 900 and 1000.
The convergence of important parameters of the solution have been compared: the minimum
film thickness value and the central film thickness value (the film thickness at x = 0 location).

Table I. Chosen typical parameters of a highly loaded EHL steel-to-steel line contact flooded by a
mineral oil

Parameter Description Value
u Speed of contact surfaces (mean value) 5942-10" ! ms~!
E’ Reduced modulus of elasticity 2.198-10'" Pa

Reduced radius of non-deformed contact surfaces 1.11130-107 > m

w Load per unit length 1.225-10° kg m~!
b Half-width of dry (Hertzian) contact 1.256-10—

z Constant in Equation (3) 0.6960

Do Constant in Equation (3) 1.980-108 Pa

o Pressure—viscosity exponent 2.276-107% Pa~!
7o Viscosity at atmospheric pressure 4.110-1072 Pas

A Constant in Equation (4) 5.820-10— 1

C Constant in Equation (4) 1.680-10—1°

Po Density at atmospheric pressure 8.66-10%> kgm—3
Xin Start of the considered contact region —4.400-10~* m

Xout End of the considered contact region 1.700-10~* m

U Dimensionless speed parameter <= Z?;) 1.000-10—!"

G Dimensionless material parameter (= aE’) 5002

w Dimensionless load parameter <=;;R> 5.005-107°
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Figure 3. Pressure profile of the isothermal EHL line contact. Parameters are listed in Table 1. Surfaces are rolling
from left to the right, thus the inlet region is on the left.

The secondary pressure maximum value does not show any reasonable trend and was not
investigated. Results of the investigation are introduced in graphic form in Figure 5 (the
minimum film thickness) and Figure 6 (the central film thickness). The accurate values from
which Figures 5 and 6 were constructed, are introduced in Table II.
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Figure 4. Film thickness profile of the isothermal EHL line contact. Parameters are listed in Table I. Surfaces are
rolling from left to the right, thus the inlet region is on the left.
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Figure 5. Minimum film thickness values for different numbers of equidistant grid nodes. The presented formula
results are denoted by +, while the comparative results are denoted by O.

It is clear from both the figures and the table that the presented discretization formula
(6a—g) gives more accurate values for the central and minimum film thickness compared with
Equation (7a—c), while benefits of the first-order discretization, such as convergence behavior,
are kept. To reach convergence, the same relaxation factors were used for both the presented
and comparative formulae. Moreover, the presented formula gives an underestimation of the
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Figure 6. Central film thickness values for different numbers of equidistant grid nodes. The presented formula results
are denoted by +, while the comparative results are denoted by O.
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Table II. Central and minimum film thickness values computed for different numbers of grid nodes
using the presented discretization formula and the comparative (Lubrecht and Venner) formula?®

Number of Minimum film thickness (-10~7 m) Central film thickness (-10~7 m)
grid nodes
Presented Lubrecht and Venner’s Presented Lubrecht and Venner’s
formula formula formula formula
100 2.0961 2.1439 2.3848 2.5577
200 2.0879 2.1169 2.4073 2.4963
300 2.0854 2.1030 2.4113 2.4712
400 2.0823 2.0965 2.4127 2.4577
500 2.0800 2.0907 2.4133 2.4494
600 2.0789 2.0875 2.41358 2.4437
700 2.0774 2.0851 2.41374 2.4396
800 2.0766 2.0831 2.41385 2.4365
900 2.0759 2.0817 2.41390 2.4340
1000 2.0751 2.0804 2.41395 2.4321

2 The same values are depicted in Figures 5 and 6.

central film thickness and an overestimation of the minimum film thickness, while the
comparative formula gives an overestimation of both.

Both methods require approximately the same number of iterations to reduce values of the
algebraic system residues below a given value. The value was chosen to be very low, (10~ 19)
for all computations, to ensure that the solution is not influenced by this kind of error. Thus,
a double precision type of 16 significant digits was used.

(ph)e = (ph)Pa (73.)
dp\ _ pe—pp
<dx>e B Xg — Xp. (7)
1 1
Fe = 5 FP + 5 FE (7C)

6. CONCLUSION

A solution method for the isothermal, steady state EHL line contact problem was introduced.
The basis of this methodology is the developed first-order discretization formula. This is more
accurate than the previously used one (by Lubrecht [9] and Venner [10]), proved by the
comparison of results given by both formulae. Recommendations for further research has been
outlined. Although the benefit of the formula has been shown on the isothermal line contact
case under steady state conditions, it needs to be used in more complicated situations, such as
transient situations and elliptical contacts. Research in those fields has just started.

APPENDIX A. NOMENCLATURE

A 1 lubricant density coefficient
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1 lubricant density coefficient

(eastern) control volume wall between grid points P and E
grid point left of the control volume

reduced modulus of elasticity

film thickness

constant part of the film thickness

grid point

Pa pressure

Pa Roeland’s parameter of lubricant

grid point within the control volume

reduced radius of contact surfaces

mean velocity of surfaces (u,+u,)/2

(western) control volume wall between grid points P and W
Nm~! line contact load per unit length

587

g8 B

grid point right of the control volume
m axis in the direction of rolling
1 Roeland’s parameter of lubricant
m distance between grid nodes and control volume length
ms ‘diffusion’ coefficient in the Reynolds equation
Pa~! pressure—viscosity coefficient
m elastic deformation of both contact surfaces
Pas viscosity at atmospheric pressure
Pas viscosity at a given pressure
kgm~3 density at atmospheric pressure

-3

kg m density at a given pressure
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